Soutenance de thèse de Mathilde COQUIL

de l'équipe LMCT et sur le sujet suivant :
« Identification des contributions énergétiques pour l'extraction liquide-liquide ».

Soutenance prévue le lundi 6 décembre 2021 à 13h30 (Auditorium ICSM).

Malgré son importance, la description de l’extraction liquide-liquide est rendue difficile car le lien entre les méthodes expérimentales et les simulations de dynamique moléculaire n’est pas direct en raison de l’existence de phénomènes d’organisation. Nous proposons une nouvelle méthodologie combinant des mesures microcalorimétriques et des simulations de dynamique moléculaire pour mieux décrire la nature et la force des interactions dans ces fluides complexes. Dans la première partie de ce travail, l’étude de la contribution correspondant à l’évolution de l’énergie de solvatation en phase organique est présentée. Les enthalpies de dilution ont été obtenues par des mesures microcalorimétriques à 25°C pour le n-dodécane et le n-heptane avec du N,N-di(2ethylhexyl)isobutyramide et pour le n-dodécane avec du N,N-di(2ethylhexyl)butyramide. Ces résultats ont été comparés, grâce à une nouvelle méthode que nous présentons ici, à des simulations de dynamique moléculaire réalisées sur ces mêmes systèmes. Nous avons notamment analysé l’influence de la ramification de la chaîne alkyle au voisinage du site complexant des molécules d’extraction et le rôle du diluant. Globalement, l’enthalpie d’excès obtenue indique des mélanges assez proches de solutions régulières, mais le bilan détaillé montre une attraction importante entre les extractants, attraction qui peut conduire à la formation d’entités macromoléculaires favorisant l’extraction. Dans la deuxième partie de ce travail, l’étude des mélanges multiconstituants en phase aqueuse a été réalisée pour différentes concentrations. Une nouvelle méthodologie basée sur des simulations moléculaires a été proposée et a été appliquée aux mélanges binaires (LiNO3 + H2O) pour lesquels des données expérimentales de dilution étaient disponibles. Pour compléter l’étude des mélanges binaires, le système (UO2(NO3)2 + H2O) a également été étudié. Enfin, la même méthodologie a été appliquée aux solutions ternaires (UO2(NO3)2 + LiNO3 + H2O). Ainsi, les enthalpies molaires partielles des différents sels ont pu être estimées par dynamique moléculaire dans cet état de référence. Dans la troisième partie de ce travail, nous avons étudié la phase organique de la même manière que pour les phases aqueuses chargées mais cette fois-ci pour des mélanges quaternaires (UO2(NO3)2 + H2O + DEHiBA + n-dodécane). La finalité de cette étude était de déterminer l’enthalpie d’extraction à partir des enthalpies molaires partielles du nitrate d’uranyle en phase aqueuse et en phase organique, et les enthalpies molaires partielles du ligand et du complexe calculées. L’enthalpie d’extraction a été modélisée de deux façons différentes, d’une part par un modèle de complexation prenant en compte la formation de l’espèce majoritaire, et d’autre part par un modèle global de transfert du nitrate d’uranyle, prenant en compte uniquement le changement de solvatation du nitrate d’uranyle. Ces travaux ont permis de montrer que la calorimétrie était une méthode de choix pour relier les expériences et les simulations de dynamique moléculaire notamment dans le cadre de l’étude des mélanges liquides complexes utilisés dans le nucléaire. La comparaison de ces deux approches permet d’arriver à une compréhension profonde des mesures en quantifiant les contributions énergétiques par la simulation. De plus, cela permet de valider les modèles moléculaires en testant des grandeurs thermodynamiques directement reliées à leurs champs de forces.

Mots-clés : Chimie séparative ; Thermodynamique ; Dynamique moléculaire ; Chimie théorique