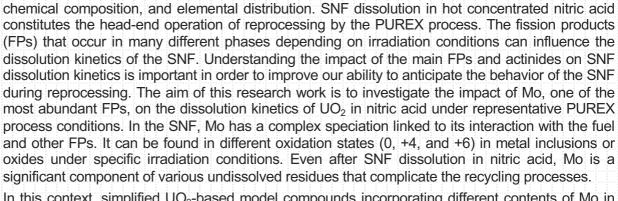


PhD DEFENSE


Speciation of Molybdenum in Uranium Dioxide: Impact on Dissolution Kinetics under Reprocessing Conditions

Mohammad HUSAINY

Interfaces of Material in Evolution (LIME)

Friday, November 8, 2024

The UOx spent nuclear fuel (SNF) is a complex heterogeneous system in terms of microstructure,

2:00 PM

In this context, simplified UO_2 -based model compounds incorporating different contents of Mo in the metallic state (prevailing state in SNF) were first prepared by hydroxide precipitation followed by shaping and then sintering at a high temperature under a reducing atmosphere. Dense pellets with controlled physico-chemical properties and a representative microstructure of SNF were produced. Another set of UO_2 -model compounds incorporating mixed Mo phases, Mo^0 and $BaMo^{IV}O_3$ (analogue of the gray perovskite phase), were also prepared by successive hydroxide precipitation steps followed by conversion at a high temperature under a reducing atmosphere. The speciation, morphology, and spatial distribution of the elements in the converted samples were determined. Dissolution experiments were carried out under representative SNF reprocessing conditions (4 mol.L-¹ HNO₃ at 80°C) following a dynamic protocol. The dissolution of pure Mo^0 , $Mo^{IV}O_2$, $BaMo^{IV}O_3$, and $BaMo^{VI}O_4$ reference samples was also carried out under the same conditions to understand separately their dissolution mechanisms in nitric acid and evaluate their influence on UO_2 dissolution kinetics. The obtained results provide essential insights into the dissolution mechanisms of the different Mo phases and the specific role of the Mo oxidation state in UO_2 dissolution in nitric acid, offering potential pathways for optimizing the recycling process.

Keywords: Molybdenum; ${
m UO_2}$ -based model compounds; Dissolution mechanisms; Solid-liquid interface; Nuclear fuel recycling

