

Phd Defense

Valentin LEGRAND lons at Active Interfaces (L2IA)

Green process for cleaning up mining sites: Superchaotropic separation of tungsten/molybdenum using foams

Tuesday, January 13, 2026

9:00 AM

This thesis develops a low-impact approach for recovering tungsten from mine residues containing scheelite, based on the formation of superchaotropic polyoxometalates and their separation by foams. under soft acidic leaching conditions by H₂SO₄-H₃PO₄ controls the speciation toward the Keggin-type phosphotungstate H₃PW₁₂O₄₀ (HPW), confirmed by UV-Vis and ³¹P NMR, and quantified by SAXS which highlights molecular species in solution. An optimal acidity window favors HPW while limiting the concurrent precipitation of H₂WO₄ and CaSO₄. Superchaotropic flotation using non-ionic surfactants, notably C₈G₁, takes advantage of the strong adsorption of POMs on neutral micelles at the air/water interface and enables the selective extraction of tungsten, with demonstrated selectivity over Ca²⁺. In real matrices, the presence of Fe³⁺ is critical since it leads to Fe(III)-POM species detected by UV-Vis and impairs foam stability. Conditioning of the medium through selective iron precipitation with ferrocyanide restores foam stability and extraction efficiency without depleting HPW in solution. Application to Salau residues demonstrates the feasibility of an integrated sequence combining mild leaching, targeted iron removal and interfacial foam separation, opening an operational perspective for tungsten recovery.

Keywords: Scheelite; Lixiviation; Separation; Foam; Polyoxometalates; SAXS

